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The Next Generation of Fatigue Prediction Models: Evaluating 

Current Trends in Biomathematical Modelling 

Biomathematical models (BMMs) are parametric models that quantitatively 

predict fatigue and are routinely implemented in fatigue risk management 

systems in increasingly diverse workplaces. There have been consistent calls for 

an improved "next generation” of BMMs that provide more accurate and targeted 

predictions of human fatigue. This paper examines the core characteristics of 

next-generation advancements in BMMs, including tailoring with field data, 

individual-level parameter tuning and real-time fatigue prediction, extensions to 

account for additional factors that influence fatigue, and emerging nonparametric 

methodologies that may augment or provide alternatives to BMMs. Examination 

of past literature and quantitative examples suggests that there are notable 

challenges to advancing BMMs beyond their current applications. Adoption of 

multi-model frameworks, including quantitative joint modelling and machine-

learning, was identified as crucial to next-generation models. We close with 

general recommendations for researchers, practitioners, and model developers, 

including focusing research efforts on understanding the cognitive dynamics 

underpinning fatigue-related vigilance decrements, applying emerging dynamic 

modelling methods to fatigue data from field settings, and improving the 

adoption of open scientific practices in fatigue research. 

Keywords: cognitive modelling; alertness; performance; sleepiness; prediction 

Relevance to human factors/ergonomics theory 

Mental fatigue poses risks to the operational safety and effectiveness of sociotechnical 

systems and can negatively impact human performance and health. To mitigate such 

risks, human factors researchers and practitioners frequently employ predictive 

biomathematical models of fatigue as part of fatigue management strategies. To better 

understand the dynamics of mental fatigue and improve our ability to mitigate against it, 

new avenues for improving the relevance, accuracy, and validity of fatigue models must 

be identified and evaluated. 



1. Introduction 

Fatigue is often defined as a physiological state of reduced mental or physical 

performance capability resulting from sleep deprivation, circadian processes, or other 

situational factors (Noy et al. 2011). In situations where failures of sustained vigilance 

can have serious consequences, fatigue prediction is often implemented to mitigate risk.  

Biomathematical models (BMMs) are often applied to predict the neurobehavioural 

outcomes of fatigue (e.g., alertness or response time) using time of day and sleep/wake 

history (see Civil Aviation Safety Authority, 2014). For example, airlines utilise crew 

management systems that coordinate workforce allocation across the globe using 

projected fatigue, and militaries utilise BMMs to implement watchkeeping schedules 

that optimise operational readiness. The proliferation of BMM tools has supported 

fatigue management in safety-critical work domains such as aviation, transportation, 

construction, and defence. In these contexts, practitioners typically predict fatigue using 

pre-configured ‘default’ BMM implementations that provide population average fatigue 

forecasts. These implementations have several uses, including to evaluate the relative 

fatigue risks of alternative work rosters, facilitate design of future technical systems 

(Boeing et al. 2020), and support accident investigations (Price and Coury 2015). 

Due to the success of BMMs, the increasing abundance of data in modern 

workplaces, and the rise of increasingly powerful automation technologies, there have 

been calls to develop new fatigue prediction methods with additional capabilities 

(Dawson et al. 2011; Gunzelmann, M. James, and Caldwell 2019; Horrey et al. 2011). 

We refer to these desired advancements as next-generation fatigue modelling, consistent 

with prior literature (e.g., Dawson 2012; Dawson et al. 2011; Stone et al. 2020). Next-

generation fatigue prediction could be achieved using several approaches. In this paper, 

we focus on development of models that are extensions or adaptations to BMMs, but 



acknowledge complementary machine-learning approaches (Section 2.4) and emerging 

neurophysiological models and latent variable estimation methods (Section 3.1). A 

focus on adapting BMMs is important because they are widely and routinely employed 

in fatigue-risk management systems by industry and continue to garner significant 

research interest. The need for improved BMMs has been recognised for some time by 

both industry and researchers (Flight Safety Foundation 2005; Hursh et al. 2004; 

Klerman and Hilaire 2007; Reifman 2004) with limitations of existing BMMs reviewed 

extensively (Dawson 2012; Dawson et al. 2011). The most thoroughly researched 

approaches to improve BMMs include tailoring them to match the fatigue dynamics of 

work environments and populations of interest; individualising them to specific 

operators or individuals (Liu et al. 2017; Reifman, Rajaraman, and Gribok 2007; Van 

Dongen, Bender, and Dinges 2012); and expanding them to incorporate a wider range of 

fatigue-related factors, such as workload (e.g., Honn et al. 2016; H. T. Peng et al. 2018). 

The central theme across these advancements is a need for more accurate and targeted 

predictions of human fatigue. Such models would have significant implications for 

safety-critical job domains in which teams must contend with intensive environmental 

and workplace demands while maintaining high levels of performance and safety over 

lengthy missions (Bell et al. 2016; Cham et al. 2021). 

The high enthusiasm for next-generation BMMs (e.g., Bendak and Rashid 2020; 

Civil Aviation Safety Authority 2014; Flynn-Evans et al. 2020; Stone et al. 2020) has 

been maintained by advances in fatigue science, machine learning, and sensor 

technologies which passively detect human fatigue. Despite this enthusiasm, and 

substantial research efforts, progress is still in early stages. Research is limited primarily 

to experimental proof-of-concepts, with few next-generation features validated in, or 

applied to, the industries where predictive improvements are most needed. Further, calls 



for next-generation models have echoed throughout scientific and industry-focused 

publications since the early 2000s, yet there remains a scarcity of successful 

implementations. Dinges (2004, A182) concluded that “Most current models of fatigue 

and its effects on performance appear to be more descriptive curvefitting, than 

theoretically driven, hypothesis-generating, data-organising, mathematical approaches”. 

There have been few changes in this regard since Dinges’s assessment in 2004. 

A pressing question of concern is why has this research plateaued? Are there 

barriers, such as statistical constraints, that have slowed down the enhancement of 

BMMs and their application to relevant industries? In this article, we aim to describe the 

limitations of current methods and stimulate new avenues of research and development. 

In doing so, this paper also serves to consolidate the heterogeneous research on fatigue 

prediction into a more complete analysis of current development and progress, 

including emerging methods that can support a better understanding of the dynamics of 

fatigue. Elucidating the limits of BMMs does not preclude their continued use or 

refinement, instead it improves the certainty human factors practitioners and researchers 

can have regarding their realistic effectiveness, in turn, fostering new approaches to 

safety optimisation and research. 

We begin the paper by reviewing the key characteristics of next-generation 

models, focusing on tuning model parameters using field-derived data (Section 2.1); 

individual-level parameter tuning and real-time fatigue prediction (Section 2.2); and 

extensions to modelling algorithms to account for additional factors that influence 

fatigue (Section 2.3). We then introduce and review alternative emerging methods, 

including machine-learning, that may augment or provide alternatives to BMMs 

(Section 2.4). Throughout these sections, we summarise research progress, identify 

practical and theoretical constraints limiting real-world applications, and utilise 



simulations and quantitative examples to explicate our arguments. We conclude the 

paper with a general summary of our findings and discuss the key challenges and 

opportunities facing the field of fatigue science. 

2. Next-generation Fatigue Prediction Methods 

Next-generation models offer opportunities to extend the applicability of fatigue 

prediction beyond their current capabilities of forward scheduling and population-

average roster analysis. Three capabilities are core to the propositions of how BMMs 

can be adapted to meet next-generation goals. The first is that next-generation BMMs 

should be tailored appropriately to work populations and contexts of interest. Current 

generation BMMs are largely developed in controlled laboratory settings using samples 

of convenience. There is consensus that BMMs lack extensive validation in many 

operational contexts and bear only a coarse relationship with real-world risk (Dawson 

2012; Dawson, Darwent, and Roach 2017; Gander et al. 2011; James et al. 2018; 

Reifman, Rajaraman, and Gribok 2007; Riedy, Roach, and Dawson 2020). The second 

capability is an important related case of model tailoring known as individualisation — 

that is, the capability to individualise predictions to specific employees. Many fatigue 

prediction scenarios, such as identifying the risk of nonoptimal performance or human 

error in a work environment, require specific predictions about the performance of each 

operator. Unsurprisingly, current generation BMMs, which focus on group-level 

average predictions, are poor predictors of individual-level performance in the field 

(e.g., in simulated lunar habitation see, Flynn-Evans et al. 2020; in naval submarine 

activities see, Wilson et al. 2021). The third capability is that next-generation BMMs 

should be extended to incorporate additional fatigue-relevant factors (Horrey et al. 

2011). Current research has focused predominantly on the influence of pharmaceutical 

fatigue countermeasures (Ramakrishnan et al. 2013), chronic sleep dept (Rajdev et al. 



2013), and task demands or workload (Honn et al. 2016; H. T. Peng et al. 2018). 

Though not a core capability, the incorporation of non-parametric methods has been 

argued to be essential to the realisation of next-generation models (Reifman, 2004). 

Below, we detail each of these key areas further, assess the limitations of BMMs for 

next-generation modelling, and provide readers with practical future research directions. 

2.1. Tailoring BMMs to Work Populations and Contexts 

A frequently raised concern about current generation BMMs is that the laboratory 

conditions under which they are developed do not accurately represent the fatigue 

dynamics that occur in the work populations and scenarios of application (Dawson, 

Darwent, and Roach 2017; Dean et al. 2007; Williamson et al. 2011). Indeed, many 

operational contexts involve challenges that make the assumptions of default BMM 

parameterisations inappropriate. For instance, in the submarine context (a setting we 

examine later in this paper), the lack of exposure to natural light sources and artificial 

sleep-wake patterns (demanded by rostering constraints) can disrupt circadian processes 

and rhythmicity, potentially altering the predictive contribution of the circadian 

processes in BMMs (Cham et al. 2021; Guo et al. 2020; Sandal, Leon, and Palinkas 

2006). Similarly, sleep quality can be disrupted by environmental factors like motion or 

ambient noise, potentially influencing the homeostatic recovery rate (Beare et al. 1981; 

Guo et al. 2020). Thus, using BMMs based on laboratory data may limit the accuracy of 

workplace fatigue predictions. In turn, this may compromise risk mitigation efforts 

when performing forward-scheduling or mission planning (Flynn-Evans et al. 2020; 

Reifman, Rajaraman, and Gribok 2007; Wilson et al. 2021). 

There are several ways that BMMs could be augmented or adjusted to better 

represent the dynamics of work populations of interest. One conceptually 



straightforward method is parameter tuning. BMMs include free parameters, which 

theoretically can index variations in fatigue dynamics across individuals or work 

contexts (Van Dongen et al. 2007). It follows, that one way to tailor or tune a BMM is 

to adjust model parameters to better describe fatigue measurements observed from a 

specific work population. Tailoring BMMs requires representative fatigue data that 

models can be trained with, yet obtaining appropriate data that reliably improves BMM 

predictions is challenging. One solution is to conduct high-fidelity laboratory studies 

with an employee sample and simulate their expected workplace conditions and 

demands, for example by using synthetic task environments (Flynn-Evans et al. 2020; 

Gonzalez, Vanyukov, and Martin 2005). This approach allows experimental control 

over the exposure to natural light, timing and duration of sleep, and the nature of work-

representative tasks. This method greatly improves external validity while retaining the 

experimental control required for model estimation and development (e.g., Vital-Lopez, 

Doty, and Reifman 2021). 

Applying an experimental approach may not be feasible in many industries due 

to the constraints in faithfully representing the relevant factors affecting fatigue in a 

workplace with laboratory resources. For many industries, it is costly to retain experts in 

laboratories for the durations necessary to ascertain fatigue trajectories, which can be on 

the order of days (e.g., in maritime domains, van Leeuwen et al. 2020). Therefore, an 

appealing alternative is to capture individuals’ fatigue and sleep data directly in the 

work environment or operational context. The benefits of this approach are: 1) it offers 

the best chance of capturing the strain and recovery dynamics directly as they unfold in 

response to the environmental stressors which influence the underpinning 

neurobiological fatigue processes; and 2) field fatigue measurement is essential for ‘real 

time’ prediction, in which fatigue forecasts are updated based on incoming field data.  



The challenges to field estimation must be considered. To successfully estimate 

BMM parameters from field data in workplace settings, data collection must be 

minimally invasive, and yet comprehensive enough to identify the complex non-linear 

dynamics specified by BMMs. Given the many possible processes that underlie fatigue 

in the field, it is probable that fatigue and sleep measurements are affected by 

significant noise. If field measurements are too sparse or of insufficient quality to 

provide reliable estimates of true underlying fatigue dynamics, a BMM trained on that 

sample could fail when used to predict new data. Cross-validating trained BMMs on 

new data can provide some assurances (e.g., Ramakrishnan et al. 2016). However, 

cross-validation does not ensure BMMs measure the underlying fatigue processes of an 

individual or group, a goal which has been pursued in the literature (Ramakrishnan et al. 

2015). Cross-validation speaks only to predictive accuracy for a particular set of data, 

and therefore provides no guarantees that a set of BMM parameter estimates will 

generalise to data ranges (e.g., sleep schedules) outside of those that have been tested. 

Indeed, St Hilaire et al. (2017) found substantial mis-fit when applying existing pre-

trained BMMs to predict fatigue in a study involving chronic variable sleep deficiency, 

suggesting that the BMM parameter estimates may have been overfit to the sleep 

schedules from the studies in which they were initially tested. Thus, a key step in 

determining the feasibility of tailoring BMMs is to understand their estimation 

properties in simulations with field-like data. 

In the following section, we explore the feasibility of estimating a BMM using 

field data with a simulated parameter recovery study. With this approach, estimation 

properties are interrogated by simulating data from a set of known parameter values, 

then (treating the synthetic data as if it were real data) applying an estimation technique 

and checking the extent to which estimated values match the true values. Parameter 



recovery has been called for in the fatigue science literature (e.g., Reifman et al., 2007) 

and informs the capability of BMMs to meet next-generation needs. To foreshadow, our 

results indicate that under highly favourable assumptions (regarding sampling 

frequency, measurement accuracy, and underlying fatigue dynamics) some model 

parameters can be well-estimated from field data, but important parameters relating to 

the homeostatic process are poorly estimated. 

2.1.1. Parameter Recovery Study 

The parameter recovery data structure is derived from an intensive longitudinal study of 

64 navy submariners, across three submarine activities which lasted from 8 to 12 days 

each (see Wilson et al. 2021, for further details). Compliance was high, with the 

protocol embedded in work routines. We believe the data are of the upper bound of 

quality for a field scenario without risking extraneous demands to submariners. We 

generated a simulated dataset that matched the actual data with respect to sleep/wake 

patterns and fatigue observation timing and frequency (N = 1749). Further details of the 

measurement protocol, data structure and generation, and model fitting procedure are 

included in the supplementary materials.  

We examined the parameter recovery properties of the “unified model of 

performance” (Rajdev et al., 2013) because it is analytically tractable and it includes a 

sleep debt mechanism that theoretically accounts for the chronic fatigue accumulation 

likely to occur in operational environments (Liu et al. 2017; Rajdev et al. 2013; 

Ramakrishnan et al. 2013). 100 different sets of unified model parameter values were 

sampled (see supplementary materials for parameter ranges and sampling approach). 

Note that some BMM parameters depend on the scale of the outputted prediction (e.g., 

psychomotor vigilance task [PVT] mean response time, PVT lapses). We scaled the 



outputted fatigue prediction to approximately cover the number of lapses expected on a 

10-minute PVT in order to match the BMM literature (e.g., Rajdev et al. 2013). For 

each of the 100 parameter sets, we simulated fatigue data from the model (with the 

respective parameter set), using the true recorded submariner sleep/wake patterns and 

fatigue measurement timestamps as inputs. We then fit the unified model to this 

simulated data in order to obtain the recovered parameter estimates. A match between 

the recovered parameter values and the original generating parameters (ground truth) 

indicates identifiability (i.e., good parameter recovery) — which is, the extent that 

parameters unambiguously describe the observed data better than any other set of 

parameters. 

We used Stan (Carpenter et al. 2017) for the R Language (R Core Team 2020) 

which estimates parameters with Bayesian Markov Chain Monte Carlo methods. This 

provides information about the most likely parameter estimates and the distribution of 

possible values, thus capturing uncertainty. Figure 1 shows the results of the analysis, 

with the recovered parameter estimates plotted against the generating parameters. In 

each panel, wider error bars indicate greater uncertainty, and accuracy is shown by 

distance from the centre line. To characterise the posterior mean parameter estimates, 

we also present mean absolute bias error (Equation 1) and normalised root mean square 

error (Equation 2): 

MABE =  (
1

𝑛
) ∑|𝜃𝑖̂ − 𝜃𝑖|

𝑛

𝑖=1

  (1) 

𝑁𝑅𝑀𝑆𝐸 =
√1

𝑁
∑ (θ𝑖 − θ𝑖̂)

2𝑁
𝑖=1

max θ − 𝑚𝑖𝑛(θ)
 ⋅  100 (2)

 

 where 𝜃 is the estimated posterior mean parameter value and 𝜃 is the true parameter 



value. NRMSE provides a descriptive summary of the apparent scaled relative 

differences in error across parameters. 

[Insert Figure 1 approximately here] 

The results show high estimation accuracy and certainty was present for three 

critical parameters: U which informs the relative upper-bound contribution of the 

homeostatic process (MAB = 0.28, NRMSE = 2.38%); κ which controls the relative 

contribution of the circadian process (MAB = -0.14, NRMSE = 4.2%); and Φ which 

controls circadian phase (MAB = -0.18, NRMSE = 2.01%). The time constant 

parameters that control the rate of fatigue accumulation τw (MAB = 0.04, NRMSE = 

8.08%) and recovery τs (MAB = 0.25, NRMSE = 5.71%) were mostly accurate, but 

estimation was highly uncertain. The parameter τLA controlling long-term sleep 

deprivation processes recovered particularly poorly (MAB = 5.85, NRMSE = 27.99%). 

One Bayesian technique to address this would be to place a tight prior distribution on 

the value of τLA, centred on the parameter values obtained from previous studies. The 

recovery of the initial level of homeostatic fatigue (S0; MAB = -0.14, NRMSE = 

21.83%) was also poor, but this is not necessarily problematic as the initial level of 

fatigue is unlikely to have a long-running effect (particularly over extended 

timeframes). 

The analysis presented here is probably near the upper limit on expected 

parameter estimation in field settings. We included a large sample with a high within-

person measurement sampling rate over a broad time scale. The fatigue observations 

here were generated assuming that the unified model is the true model of fatigue 

dynamics, and assuming normally distributed noise without any systematic biases. In 

other words, our analysis assumes there are no additional factors (e.g., workload or 



fatigue countermeasures) that bear systematic influence on fatigue, which would be 

violated in naturalistic environments. We also assumed individuals within the sample 

are homogenous in terms of parameters (e.g., identical circadian phase), and we did not 

place constraining bounds on the data ranges that the models can predict (e.g., by fixing 

the minimum or maximum number of lapses). In realistic field conditions, these 

assumptions are likely to be violated (i.e., differences in parameters across individuals 

and bounded possible observed fatigue scores), reducing the quality of estimation.  

Overall, the results here are consistent with prior research on the unified model 

(Liu et al., 2017). The relative contributions of the homeostatic and circadian process to 

fatigue recovered reasonably well. Although circadian phase also recovered sufficiently, 

in practice it would be more appropriate to estimate phase using alternative data (e.g., 

core body temperature, sleep timing, light exposure) (Brown et al. 2021; Stone et al. 

2020). Parameters requiring most attention were the time constants of the homeostatic 

process. These recovered poorly, implying that the time course of the fatigue response 

to sleep/wake was difficult to estimate under even ideal conditions. As identifying the 

time course of the homeostatic process is one of the primary interests of field 

estimation, this suggests there may be limited utility provided by BMMs estimated from 

field data as compared with standard BMMs trained on laboratory data. However, there 

are other potential mechanisms of model advancement which we explore in more detail 

below, including model individualisation and extension. 

2.2. Model Individualisation and Real-Time Prediction 

The so called “Holy Grail in fatigue and performance modeling” is fatigue prediction 

individualisation through tailoring model parameterisations to each person (Reifman 

2004, A177). The theory of individualisation is that between-person differences in 



circadian phase, or potentially the biological dynamics governing sleep regulation, can 

be directly included within the modelling framework by adjusting parameterisations for 

each person uniquely. Consistent with group-level estimation, parameters can be 

estimated using observations within a controlled laboratory context, or from data 

collected in field operations. This latter approach is the basis of “real-time” fatigue-

prediction tools, in which parameters are estimated for individuals in response to real-

time incoming data streams, enabling reactive identification of workplace fatigue risk 

(e.g., see Liu et al., 2017). Although this approach requires considerable amounts of 

data per person (both sleep and fatigue observations), there are strong arguments that 

characterising fatigue dynamics at the individual-level may improve model 

performance. 

From a practical perspective, in many safety-critical workplaces it is most useful 

to obtain fatigue projections for specific employees over a period of hours to a few days 

(fitness to work), rather than knowing if an average employee would stay below fatigue 

safety thresholds given a particular roster. In complex work systems, such as those often 

required in extreme work environments, unsafe levels of fatigue in even one team 

member could have serious consequences (Cham et al. 2021). Thus, real-time fatigue 

forecasts made possible by individualisation promise improved tactical decision making 

(e.g., ideal time to execute mission scenarios) and crew rotation decisions (e.g., which 

staff are at heightened performance risk). 

There are also strong justifications from research and theoretical perspectives. 

Individuals are known to vary with respect to chronotype (Brown et al. 2021), the 

timing of rest-periods, and vulnerability to sleep deprivation (Chua et al. 2019). Early 

research has indicated individualised models are possible (Dawson et al. 2011; 

Ramakrishnan et al. 2015) with uncertainty regarding which parameters should be 



considered as stable trait differences, relative to state differences that fluctuate within-

person (Ramakrishnan et al. 2015; Van Dongen et al. 2007). A key benefit of 

individualisation is that BMM parameters can be informed by measures other than the 

performance criterion. For instance, recent circadian modelling research has indicated 

that lighting conditions bear strong predictive influence over circadian entrainment and 

sleep timing (Papatsimpa et al. 2021; Phillips et al. 2019). Thus, BMM circadian phase 

parameters could be informed from actigraphy and photometry data passively (see 

Brown et al. 2021) to reduce model complexity and improve predictive accuracy. This 

means parameter estimation using behavioural data would only need to be conducted 

for a subset of model parameters. 

Despite the appeal of BMM individualisation, there are several notable 

implementation challenges. The parameter recovery issues outlined in Section 2.1. 

apply even more strongly when the requirement is to tune BMM parameters to the 

sparser individual-level observations. Consequently, existing individualised models 

either require prior knowledge of a reliable group-average model (e.g., Liu et al., 2017; 

Van Dongen et al., 2007), or are applied to simplified conditions such as total sleep 

deprivation (Rajaraman et al. 2008; 2009; Van Dongen et al. 2007). Further, in field 

contexts there are no guarantees that the variation in fatigue observations is uniquely 

associated with the processes assumed within the BMM (unlike laboratory contexts 

where many factors are controlled) (Reifman, Rajaraman, and Gribok 2007). For 

example, if employees face high levels of work-induced fatigue, and this is not 

instantiated in the BMM, it is likely that BMM fitting would falsely attribute this work-

induced fatigue to increased homeostatic pressure. Further, the extent of inter-individual 

differences in vulnerability to sleep loss can depend on the selected performance 

measure (see Chua et al. 2019). Thus, for operational contexts, the relationship between 



an individual’s actual task performance and model prediction may depend on the 

criterion variable used in the model.  

In summary, individualising BMMs is a priority for next-generation modelling 

and promises many potential benefits. Although fitting BMMs to the behavioural data 

of individuals holds some promise towards this goal, it is constrained by substantial data 

limitations. Future approaches to individualisation, particularly involving field data, are 

likely to greatly benefit from incorporating other individualised sources of data, such as 

light exposure (Phillips et al. 2019; Stone et al. 2020). 

2.3. Extending the BMM Processes 

In real-world conditions, the causes of fatigue are heterogenous and are not driven 

purely by homeostatic and circadian processes (Desmond and Hancock 2001; Wilson et 

al. 2021). To accurately model these exogenous influences, and thereby increase 

prediction accuracy, parametric model extension has been pursued as a key direction for 

future BMMs. This involves adjusting model equations to directly specify how 

additional processes of interest affect the functional form of fatigue. Conventional 

BMMs predict fatigue based purely on sleep history and time of day, with some models 

including processes for chronic sleep restriction (e.g., Rajdev et al. 2013). Research has 

focused predominantly on the influence of pharmaceutical fatigue countermeasures 

(Ramakrishnan et al. 2013), chronic sleep dept (Rajdev et al. 2013), and task demands 

or workload (Honn et al. 2016; H. T. Peng et al. 2018).  

Here we consider whether parametric model extension of BMMs is likely to 

meet next-generation demands. To illustrate parametric model extension, the benefits 

and barriers involved, and required assumptions/decisions, we detail a complete 

example of the model extension process using the salient example of how workload 



may modulate fatigue. It is uncontroversial that fatigue is influenced by work factors, 

such as shift duration and workload (Desmond and Hancock 2001; Grech et al. 2009; 

Wilson et al. 2021). Consequently, there has been much discussion of extending BMMs 

to model how work demands (or simply work hours) influence fatigue.  

Consistent with the recovery analysis, we selected the unified model of 

performance as the starting point for the workload extension (Rajdev et al. 2013). Our 

extended model includes an additional process wherein fatigue from work demands, 

referred to as D, accrues over time spent working, with the exact rate dependent upon 

the level of homeostatic fatigue (i.e., fatigue resulting from sleep processes). The model 

specifies that work demands primarily influence an individual’s sensitivity to fatigue 

(Baulk et al., 2007). That is, task demands only additively increase fatigue when 

homeostatic pressure is high. The model implicates that high work demands can be 

more effectively managed by well-rested individuals with lower performance costs, 

relative to individuals with high homeostatic fatigue. This is consistent with how other 

groups have implemented workload BMM extensions. For example, Peng et al. (2018) 

proposed a model in which work-related fatigue accrues over time spent working, at a 

rate proportional to the task-imposed workload and current homeostatic fatigue. Honn et 

al. (2016) incorporated a similar approach into the McCauley state-space model. 

Equation 3 specifies how workload-related fatigue accrues during work time, 

with the speed of accrual at each moment dependent on homeostatic pressure. Equation 

4 specifies how recovery from work-related fatigue follows an exponential function. 

The computational implementation of the model is available (see data availability 

statement). 



𝐷𝑡 = 𝐷0 +  𝛾 × ∫ max(𝑆𝑡, 0)
𝑡

0

𝑑𝑡 (3) 

𝐷𝑡 = 𝐷𝑙 − 𝑒
−

𝑡
𝜏𝑟(𝐷𝑙 − 𝐷0) (4) 

In both equations, 𝑡 represents the total time spent working or resting, 𝐷𝑡 

represents the total fatigue from work demands at t hours, 𝐷0 represents the initial level 

of work-related fatigue (at the start of a rest or work episode), 𝛾 is a free parameter that 

controls the rate of fatigue accrual due to work demands, 𝑆𝑡 represents the homeostatic 

pressure after working for time 𝑡. The integral of 𝑆𝑡 is only taken for values above 0, to 

avoid the possibility of negative work-induced fatigue (i.e., work decreasing fatigue). 

Finally, 𝜏𝑟 is a time constant controlling the rate of recovery. The parameters 

controlling the workload process, such as 𝛾, could be estimated by fitting model 

predictions to fatigue observations obtained during work conditions (see also Honn et 

al., 2016). It would also be possible to model the fatigue accrual associated with specific 

levels of task demand by scaling the 𝛾 parameter as a function of task-load estimates or 

subjective workload ratings. Figure 2 shows the impact of adding this workload-related 

fatigue module onto the basal fatigue unified model predictions for a 0900-1700 work 

roster. The plot uses 16 different 𝛾 values, which is equivalent to plotting the process 

under a range of different workload demands. 

[Insert Figure 2 approximately here] 

The workload model described is representative of the typical BMM extension 

process. Extensions require researchers to make explicit assumptions about the 

functional form of fatigue accrual and recovery processes, and how the added process 

links to the criterion performance variable. This is conceptually straightforward to 



implement, and in our experience, simple sensitivity estimates are useful for 

practitioners to identify possible high-risk situations. However, the example above also 

highlights challenges that prevent this approach from solving the question of next-

generation predictive performance gains. 

The obvious limitation of this model, shared with many other BMM extensions, 

is the lack of comprehensive validation. Ideally, research accumulates results towards a 

well validated model component with theoretical rigor (e.g., the sleep-inertia component 

of the three-process model, Åkerstedt and Folkard 1997). Validation requires many of 

the same considerations as those for parameter estimation discussed in section 2.1. For 

example, to determine appropriate parameterisations of our model, researchers would 

need to conduct a controlled laboratory study that systematically manipulated workload. 

It must also be determined whether work-related fatigue elicited using laboratory tasks 

generalises to workplace contexts. Honn et al. (2016) developed a workload extension 

using PVT performance of pilots performing simulated take-offs and landings. Their 

workload model was calibrated by estimating a parameter φ, that controlled how 

severely cognitive task load impacted fatigue. All other model parameters were fixed, 

presumably to enable estimation. Such tightly constrained approaches are useful during 

initial development, but neglect possible parameter trade-offs, raising concerns of 

model identifiability. Indeed, the recovery behaviour of even baseline BMMs (Section 

2.1.1.) suggests significant challenges exist in freely estimating extended BMMs. 

A theory-based challenge associated with parametric model extension is 

managing the increasing model complexity during exploration and validation. Unlike 

more descriptive conventional statistical approaches, BMMs precisely specify the 

functional form of their component processes, and the relationships between these 

processes. Extant knowledge and theory of complex forms of fatigue, such as work-



induced fatigue, provide few constraints on the most appropriate model form. Ideally, 

model extensions should be compared to theoretical viable alternatives. For instance, 

the workload model we introduced above may need to account for situations of 

underload induced fatigue (Shultz, Wang, and Olson 2010; Young and Stanton 2002) or 

for the known “carry over” effects of high workload situations on subsequent sleep 

(Crain, Brossoit, and Fisher 2018). Each such point of additional complexity should be 

weighed against improvement prediction accuracy. Further, model selection is likely to 

suffer from identifiability issues analogous to the parameter identifiability issues 

discussed earlier, given the numerous theoretically plausible ways that work demands 

could affect fatigue, and the relative scarcity of work and fatigue data. 

Despite these critiques, parametric BMM extensions do hold clear benefits. 

Practically, even approximate estimations of how factors such as pharmaceutical 

counter-measures impact fatigue can support the development of safety-promotion 

strategies (Reifman et al. 2016; 2019). Similarly, imperfect models of workload provide 

practitioners a method to identify possible high-risk roster scenarios and formalise 

assumptions in a manner that would otherwise remain as qualitative verbal theory 

(Ballard et al. 2021). Thus, these techniques offer practical benefits to practitioners, but 

are unlikely to provide immediate step-changes in predictive accuracy, theoretical 

advancement, or real-time operational safety. 

2.4. Joint and Non-Parametric Modelling 

The key aim of next-generation fatigue models is to enhance our prediction in ways 

more relevant to the individual operator and the context in which they are situated. This 

can involve both increased precision in multi-factorial prediction as well as improving 

our knowledge of the theoretically relevant factors underpinning fatigue. Given the 



limitations of BMMs, there is a need to examine alternative methodological approaches, 

and how they may help address these goals. A frequently noted direction is the adoption 

of machine learning, a class of data-driven statistical techniques that allow computers to 

learn from data and generate predictions without the need for explicit model structures 

or instructions (Jordan and Mitchell 2015). 

Reifman (2004) distinguished between parametric fatigue models (i.e., BMMs), 

and non-parametric fatigue models (i.e., machine-learning approaches), such as artificial 

neural networks, which make predictions without requiring an a priori model structure 

(see also Breiman 2001). A benefit of machine-learning approaches is that, in principle, 

they can incorporate any number of predictors (Jordan and Mitchell 2015), including 

urine output, cortisol levels, workload, and light exposure (Reifman, 2004). Reifman 

(2007) proposed several variants of fatigue prediction involving non-parametric 

approaches, including "hybrid methods" in which BMMs are embedded within neural 

network architectures to improve prediction. Machine-learning can also enable 

integration of real-time physiological indicators of fatigue, such as cardiovascular state 

(Aryal, Ghahramani, and Becerik-Gerber 2017; Hu and Lodewijks 2020), although 

these approaches have been argued to have limited utility and validity (Dawson, Searle, 

and Paterson 2014). Given sufficiently mature computational infrastructure, machine-

learning approaches could predict fatigue during operations, potentially recommending 

interventions when fatigue risk is high. The prospect of deploying such systems in 

workplace environments is increasingly possible due to advances in statistical methods, 

data storage, and computational power. 

It is timely to begin identifying and validating applications of machine-learning 

methods into the fatigue prediction toolkit. Even for researchers who continue to pursue 

BMM extension, machine-learning methods can indirectly integrate with BMMs. For 



example, machine-learning can help generate estimates of individuals’ sleep quality and 

quantity from wearable technologies (Lewicke et al. 2008; Piotrowski and Szypulska 

2017). Sundararajan et al. (2021) recently applied random forest machine-learning 

models to classify wrist-worn accelerometry data into sleep/wake and non-wear. The 

approach was superior to existing methods and is accessible under a direct access 

license. BMMs and machine-learning could also function synergistically, for example 

by using BMMs to improve machine-learning predictions (e.g., model fusion), or by 

using nonparametric approaches to model whatever residual performance data cannot be 

fitted by a BMM (Sense et al. 2021). This may help overcome some of the limitations 

raised with estimating BMMs directly. 

Due to their lack of a priori structure, machine-learning methods do have 

substantial data requirements, and provide only ‘black box’ predictions that cannot be 

easily decomposed into the underlying processes (e.g., circadian rhythm). The lack of a 

specified underlying process can lead to unexpected and intractable failures when 

predicting data outside of the model’s range of training (e.g., when simulating 

alternative sleep schedules or applying to different workplaces). Cochrane et al. (2021) 

used an ensemble machine-learning model to predict the effects of sleep-loss in a forced 

desynchrony protocol dataset. However, the data requirements for accurate prediction 

were significant, requiring 10-minute PVT administration every 2-8 hours, and it 

remained grounded in laboratory validation. Nevertheless, there is a range of emerging 

non-parametric methods that may support fatigue researchers in development predictive 

frameworks that exceed the capabilities afforded by parametric BMMs alone. This is 

likely the most promising direction for next-generation BMM research and practice. 



3. Summary, Future Directions and Conclusions 

The purpose of this paper was to examine whether BMMs are sufficiently able to meet 

the demands of prominent next-generation modelling requirements and to identify limits 

of current methods and avenues for future research. We outlined themes from the 

literature regarding what is needed for improved models in operational contexts, dating 

back over 15 years. We described and evaluated current directions for advancing the 

next-generation of fatigue prediction methods, focusing on the application of BMMs in 

operational contexts.  

Firstly, we evaluated the practice of tailoring model parameters to populations or 

individuals of interest using in-situ data. Despite the conceptual appeal, we found no 

strong evidence from the literature supporting the feasibility of this approach and noted 

the logistical challenges to data collection are high. We then conducted a parameter 

recovery study, focused on the naval submarine context, which revealed that even under 

optimistic modelling conditions, estimation using field data was likely to produce 

highly uncertain estimates for at least several critical parameters. This finding lends 

support to Dawson’s (2011) suggestion that it may not be possible to tailor BMMs to 

provide accurate forecasts for a workplace context using field data. Secondly, we 

reviewed the work to-date regarding individualisation. While we noted some promising 

advancements have been made in laboratory contexts, overall, individualisation is 

constrained to tightly controlled estimation of a subset of parameters. Thirdly, we 

examined the practice of parametric BMM extension, focusing on extending a BMM to 

incorporate workload. Our example highlighted the substantial challenges associated 

with extending BMMs, including the requirement for precise theoretically informed 

mappings between any new BMM process and the underlying fatigue function (e.g., 

sleepiness) and interactions with other model processes. We concluded next-generation 



BMMs involving model extensions are likely prohibitively difficult to accurately 

specify, and extremely challenging to validate. 

It is crucial to emphasise that the limitations and barriers we have reviewed do 

not preclude continued use of BMMs for their intended purpose of risk-mitigation in 

average-level scheduling. Moreover, we are not suggesting there is no merit in 

continuing to pursue existing goals for next-generation BMM features, such as 

generating fatigue predictions that are targeted to populations or individuals, or models 

that can incorporate domain-relevant variables such as workload. However, our review 

highlights significant barriers to achieving these goals with BMMs alone. In the 

following section, we provide recommendations to guide researchers and model 

developers toward what we believe are fruitful avenues for advancing the theory and 

practice of fatigue modelling, particularly as it applies to human factors. 

3.1. Recommendations for Advancing Fatigue Modelling 

3.1.1. Expanding Theoretical Frameworks of Fatigue and Performance 

The equations underlying the BMM approach only capture a proportion of the complex 

dynamics underlying fatigue. Moving forward, fatigue science must emphasise multi-

model approaches and shift how fatigue is measured and modelled to match advances in 

other computational modelling fields. Several challenges are clear. There is a need to 

better specify the relationship between the predicted model output and the actual 

performance criterion it intends to capture. Our recovery analysis revealed that the 

behavioural response to fatigue is the element that BMMs are least effective in indexing 

(i.e., homeostatic process). It follows that this is an important area in which alternative 

frameworks and approaches could help address. 



Historically, fatigue researchers have relied on coarse data (e.g., response time, 

lapse rates, and subjective scales) for model validation and theoretical innovation. This 

reliance on coarse measures has restricted practitioners and researchers to only envision 

predictions in terms of those same coarse measures. For example, validation efforts for 

commercial models have generally only linked coarse predictions of measures (based on 

sleep opportunity) with historical safety incident rates (Hursh et al. 2006). Yet these 

outputs bear weak relevance to complex workplace task performance (Williamson et al. 

2011). Solutions have been proposed, including that models be calibrated against task 

performance metrics obtained from real-world scenarios, or representative simulations 

(Reifman, Rajaraman, and Gribok 2007). Such efforts would improve the ecological 

validity of model outputs but do little for generalisation. A promising pathway to ensure 

performance predictions can generalise across scenarios and contexts may be to model 

the latent mechanisms underlying performance.  

Although BMMs are physiologically inspired (e.g., Borberly, 1982), they do not 

explicitly model the physiological processes underlying fatigue. To address this, newer 

neurobiological models have been proposed that more directly relate behavioural model 

predictions (e.g., PVT performance) to the neurobiological mechanisms underpinning 

the sleep-wake drive (Fulcher, Phillips, and Robinson 2010; Phillips, Klerman, and 

Butler 2017; St. Hilaire et al. 2016). There are theoretical and practical advantages to 

incorporating prediction from these approaches. For example, St. Hilaire et al. (2016) 

developed the “adenosine model” which simulates cerebral extracellular adenosine 

dynamics (and receptor concentrations) to predict PVT performance under conditions of 

chronic variable sleep deficiency (insufficient and inconsistent night-to-night sleep 

duration). They compared predictive accuracy of the adenosine model to four BMMs 

(including the unified model) for modelling performance impairment under these 



complex sleep cycles. Although no model provided a single best account of all data 

features, only the adenosine model successfully predicted the magnitudes of fatigue-

related performance impairment and recovery under the variable sleep deficiency. 

Concerningly, the results suggested conventional BMMs overestimated the recovery 

achieved from 8-10 hours sleep following chronic sleep deficiency, which may pose 

operational safety concerns if not considered. This highlights the importance of 

adopting multi-model approaches in fatigue-risk assessment, particularly those that are 

based on neurologically plausible mechanisms. 

3.1.1.1. Computational Cognitive Models. Understanding the latent constructs 

underpinning the behavioural performance changes in response to fatigue requires 

dynamic models of behaviour. There have been major developments in computational 

cognitive models that specify in detail the processes underlying task performance. 

These models provide a means to quantify the effects of fatigue on performance and 

account for the processes influencing criterion variables. For instance, PVT metrics 

such as number of lapses and mean RT have ambiguous mappings to underlying 

cognitive processes (Chua et al. 2019; Veksler and Gunzelmann 2018). Consequently, it 

is unclear whether fatigue increases RT and lapses because individuals process 

information less efficiently when fatigued, or because they are responding more 

cautiously (i.e., require more evidence to respond). These competing explanations have 

direct implications for the safety profile of tasks when fatigued, but can be adjudicated 

using evidence accumulation models which use response choice and response time data 

to measure the latent cognitive constructs such as processing speed and caution. 

Evidence accumulation models have been applied to PVT performance (Chavali, Riedy, 

and Van Dongen 2017; Ratcliff and Van Dongen 2011), and integrated with BMMs to a 

limited extent (Walsh, Gunzelmann, and Van Dongen 2017). These early findings 



implicate fatigue being associated with processing speed deficits in the PVT rather than 

response caution. Alternative work has incorporated fatigue into the broader ACT-R 

cognitive architecture (Gunzelmann, M. James, and Caldwell 2019) offering 

opportunities to generalise performance predictions. 

Sophisticated computational models of behaviour help to differentiate causes of 

the fatigue response. BMMs, including the workload extensions, generally ground 

fatigue accumulation as largely a homeostatic driven process. This research is founded 

on findings with the PVT, which was initially selected as it is sensitive sleep-loss. 

However, the PVT is also sensitive to many other biases which BMMs do not directly 

examine. For example, Hockey (2013) argue that in many circumstances, fatigue can be 

manifest as a motivational issue with more transient impact on performance. Cognitive 

models can enable researchers to quantitatively test the influences of such factors. 

3.1.1.2. Dynamic Longitudinal Models. A crucial development for understanding the 

latent dynamics underlying fatigue, particularly when considering field measurement, is 

dynamic models. Dynamic structural equation modelling (Asparouhov, Hamaker, and 

Muthén 2018; Driver and Voelkle 2018) allows researchers to model how latent 

variables evolve and relate to each other over time (i.e., auto- and cross-regressive 

effects). Thus, they can inform how fatigue interacts and coevolves with individual, 

environmental, and work-related factors over time. These approaches can also address 

questions of temporal causality between measures, and unlike BMMs do not require 

exact mathematical specifications of interactions between factors. Dynamic models may 

potentially detect longer-term ‘knock on’ effects of workload to sleep quality and 

quantity, and long-term burnout (Crain, Brossoit, and Fisher 2018; Wilson et al. 2021).  

Many of the variables related to fatigue are state dependent, meaning the causal 



relationships among variables change with different states of the system (Chang, Ushio, 

and Hsieh 2017). For instance, a sustained level of high workload may cause fatigue, 

but high levels of fatigue may reduce cognitive capacity causing higher workload 

(Wilson et al. 2021). Methods such as empirical dynamic modelling (Chang et al. 2017) 

may offer a means to decompose such complex interdependencies in causal systems, 

and improve our ability to mitigate risk in safety-critical workplaces. 

3.1.2. Improve Open Science Practices 

Open science practices are increasingly integral to achieving robust science (Munafò et 

al. 2017). The fatigue sciences require significant efforts be placed towards 

computational reproducibility and transparency. Presently, most fatigue prediction 

solutions are closed source and proprietary, and in many cases, independent replication 

or extension of the work reported in scientific articles is impractical or impossible. In 

cases where BMM formulae are provided, the respective computational 

implementations generally are not. There are strong arguments for going beyond this 

minimum state of reproducibility of providing only formulae, towards a gold standard in 

which flexible model implementations are provided with journal articles (see R. D. 

Peng 2011; Wilson, Boag, and Strickland 2019). Initial steps towards computational 

reproducibility have been taken with the development of 2B-Alert Web, an open-access 

application that provides graphical BMM predictions (Reifman et al. 2016), and the 

release of the open-source R package for BMMs, FIPS, which provides sleep and 

fatigue data structures and BMM implementations (Wilson, Strickland, and Ballard 

2020). Such efforts encourage cumulative science and mitigate research fragmentation. 

There is also consensus that open data practices can accelerate methodological 

innovation and scientific discovery (Gewin 2016; Meyer 2018). For fatigue prediction, 



open data can enable new models to be evaluated on benchmark datasets and thereby 

avoid the situation where BMMs are extended using new datasets, without establishing 

if it still adequately fits the data from which the original models were developed 

(Reifman and Gander 2004). Improved validity is inherently valuable for the employees 

and organisations that fatigue prediction models are intended to benefit. Indeed, in 

reviewing BMMs, the Flight Safety Foundation (2005) emphasised their desire for 

improved data sharing practices in fatigue science and stressed the importance of 

transparent science for building industry trust. Admittedly, individuals face barriers to 

open science practices, including data privacy and intellectual property concerns. 

Practical considerations such as funding have long challenged the advancement of 

fatigue prediction methods (Akerstedt, Folkard, and Portin 2004). However, this does 

not undermine the value of the aforementioned practices. Engagement in open science is 

essential to overcome the barriers to achieving next-generation model features. 

3.2 Conclusions 

BMMs have been instrumental in advancing evidence-based fatigue management 

strategies in safety-critical contexts. Significant interest remains in the development of 

next-generation BMMs capable of providing tailored and more accurate fatigue 

predictions. This paper reviewed and analysed several key directions underpinning the 

development of next-generation models and has revealed there are significant 

challenges to realise the benefits from conventionally proposed advancements. Just as 

fatigue management strategies require consideration of multiple factors, fatigue 

prediction methods appear to require the implementation of multi-model approaches. 

The integration and fusion of BMMs with other models, including approaches such as 

cognitive modelling and machine learning, will be most critical to support more 

targeted, relevant, and accurate fatigue prediction in safety-critical workplaces. 
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